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Abstract. This paper proposes the control design of a noatimplynomial
fuzzy system withH_, performance objective using a sum of squares (SOS)
approach. Fuzzy model and controller are repredebyea polynomial fuzzy
model and controller. The design condition is akedi by using polynomial
Lyapunov functions that not only guarantee stgbiitit also satisfy theH
performance objective. The design condition is @spnted in terms of an SOS
that can be numerically solved via the SOSTOOLSsifulation study is
presented to show the effectiveness of the SOSdb&bg control design for
nonlinear polynomial fuzzy systems.

Keywords: H_, ; nonlinear; polynomial fuzzy controller; polynomial fuzzy system;
polynomial Lyapunov function; SOSTOOLS, sum of squares.

1 Introduction

A Takagi-Sugeno (T-S) based fuzzy control systefhigla type of fuzzy
control that has a systematic structure. A T-S yumzodel was used in
designing such a control system. A set of fuzzeswias used to represent the
global nonlinear system in the form of a set ofaloinear models. As an
alternative approach to describe complex nonlirgestems, the T-S fuzzy
model drastically reduces the number of rules & rttodeling of higher order
nonlinear systems. In twenty years, studies of fi&2y modeling (e.g., [2,3])
have provided the foundation for development ofteysitic approach to
stability analysis and control design of fuzzy cohsystems. However, since
the representation of the consequent parts isdinid a linear model, system
modeling is not flexible.

A nonlinear system can be modeled by a polynomigzyf model. A
polynomial fuzzy modeling and control frameworkaigieneralization of the T-
S fuzzy model and is more effective in representinglinear control systems

[4].
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A general block diagram of the polynomial fuzzy ttohsystem is depicted in
Figure 1. The real system is represented by a patyal fuzzy model. This
polynomial fuzzy model is used to design a polyreinfiizzy controller. The
design of controllers to achieve the synthesis aibje is performed through
parallel distributed compensation (PDC) [5]. Thdanridea of PDC is to derive
each control rule so as to compensate each rutegiolynomial fuzzy model.
The polynomial fuzzy controller shares the sameygets with the polynomial
fuzzy model in the premise parts. Modern controhteques can be extended to
analyze the stability of a polynomial fuzzy modadao design a polynomial
fuzzy controller. The final output of the polynoiinfazzy controller is obtained
by a fuzzy blending of each individual feedbackngai
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Figurel Polynomial fuzzy control system.

Research on stability analysis and control desfgpobynomial fuzzy systems
has been conducted (e.g., [6,7]), but in theseietudesigned controllers still
have a weakness in that the robustness of the dclosp system is not
guaranteed.

A sum of squares (SOS) is a multivariate polynorttiat can be written as a
sum of squares of other polynomials. An SOS is glgbnon negative,

restricting polynomials to be an SOS implies thugisitive semidefiniteness [8].
This property is important in many control applicas, where we can replace
various polynomial inequalities with SOS conditiodsn SOS program is an
optimization problem with SOS constraints. Studi@s SOS programs in

systems and control theory have been conductedeidsfsuch as nonlinear
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stability and control synthesis [9], and state feedk and output feedback
control [10]. This paper presents a sum of squéB€3S) approach foH,
control of a nonlinear system using polynomial fuggstems. Stability analysis
and control design for polynomial fuzzy systemseigresented in terms of an
SOS that can be numerically solved via SOSTOOLS [11

In the real world, various forms of uncertaintigssein the implementation of a
control system, for instance plant parameters, @enwise, and plant
disturbance. In order to keep the system workitigfsatorily, we have to make
it robust, in other words, insensitive to such utaisties. In the past decade,
design methods of robust control based onkhe norm have been conducted

(see for instance, [9,12-14]). The objectivetdf, control is to find a controller
u such that the closed-loop system is asymptoticailiple andL, gain from the

exogenous inpulv to the objective signal to be regulateis less than or equal
to a y value. This will provide a disturbance attenuatievel of y. TheH,,

control design may also be applied to guaranteeistoless with respect to
unstructured dynamic uncertainty [15].

Preliminary results of this paper appeared in [b&it were restricted only to
derivation of the main design theorem. The pregmper extends [16] by
providing a numerical example and simulation result

The rest of this paper is organized as followsSéttion 2, this paper briefly
reviews the polynomial fuzzy model. Section 3 pnésehe design of a stable
polynomial fuzzy control and Section 4 presents dlegign of a polynomial
fuzzy system withH_, control performance objective. A numerical exariple

presented in Section 5. Finally, the conclusiotraavn in Section 6.

2 Polynomial Fuzzy M odel

In this paper we consider a nonlinear system repted by a polynomial fuzzy
model. The main difference between a T-S fuzzy miideand a polynomial

fuzzy model [4] is the representation of the conseq part. A T-S fuzzy model
consequent is represented by a linear model, vehpelynomial fuzzy model
consequent [4] is represented by a polynomial medeh as shown in (1).

If a(t) is Mj; and ...and & (t) is My,

Then X(t) = A (X)) Z(X(t) + B (x)u(t) , i =1, ....I. (1)
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where a;(t)(j = 12,...,p) is the premise/antecedent variablsl; is the

membership function associated with ik model rule and thgth premise
variable componentA (x(t)) and B;(x(t)) are polynomial matrices i{t) .

The column vector whose entries are all monomiak(iyis denoted by
Z(x(t)). Z(x(t))ORN is anN x1vector of a monomial i®(t) . A monomial in
X(t) is a function of the form™ x52 ...x3", wherea, g, ....a, iS & nonnegative
integer.

In this paper, it is assumed thagx(t))=0 iff x(t) =0.

The overall polynomial fuzzy model is obtained hwe#y blending of each

polynomial model equation in the consequent past. Bing the weighted

average of each rule’s output, the defuzzificafioocess of model (1) can be
represented as

¥ @, (O A (O)Z(X(1) + B (x(t)u(t)}

X(t) == -
@, @a(0)
X(t) = Zh @A (xO)Z(x(®)) + B, (x(®)u(t)} )

where

a(t) =[ay(t)..2, ()
@ (a(t)) = r| M, (a (1)

ha) =20

2@ (1)

w, (a(t)) is the matching degree (firing strenght) of tkté rule andh (a(t)) is
the normalized membership function.

3 Stable Polynomial Fuzzy Control Design

This section presents the design of polynomialyuzmtrol systems based on a
sum of squares approach.
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3.1 Sumof Squares

In this paper, the computational method for polyr@rfuzzy control design is
based on the SOS decomposition of multivariate mmtyials. A multivariate

polynomial f (x(t)) where x(t)OR" is a sum of squares (SOS) if there exist
polynomialsf; & ¢))....,f,(x(t)) such that f (x(t)) = f fiz(x(t)). f(x(t)) >0 for
i=1

all x(t) OR"[8].

The following lemma presents the connection betwbenSOS representation
and the existence of apositive semidefinite maifithe polynomial.

Lemma 1 [8]. Letf(x(t)) be a polynomial inx(t)JR"of degree 2d and
Z(x(t)) the column vector whose entries are all monomialgt) with a
degree no greater thath Thenf (x(t)) is SOS if there exists a positive
semidefiniteP such that

f (x(1)) = ZT (x(V))PZ(x(t)) (3)

Implication of the conditions for the positive seledinite, SOS and existence of
a positive semidefinite matrix of polynomials amegented by the following
lemma.

Lemma 2 [9]. Let f(x) be an NxN polynomial matrix of degreed in

xOR"and Z «)the column vector whose entries are all monomialth &
degree no greater thanand consider the following conditions.

(1) F(x)=O0forallxOR".

(2) V'F(x)vis SOS, where/OR".

(3) There exists a positive semidefinite matriQ such that
VIF(x)v=(vOZ(X))' Qv Z(x)), where ® denotes theKronecker
product.

Then, (1o (2) and (2)= (3).

3.2  Polynomial Fuzzy Controller

A fuzzy controller with polynomial rule consequen@ constructed from a
polynomial fuzzy model (1) is represented as
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Control rulei-th

If a(t)isMj;and ... and a,(t)isM g

Then u(t) = -F (X(t)Z(X(t)),i = 1, ... .I. (4)
The overall fuzzy controller is given by

u(t) = -élh (a®)F (X)) Z (x())- ®)
From (2) and (5), the controlled system can beasgnted as

() = 3. ¥ (a)h; (ae))

i=1j=1
={ax®)-B (X(M)F; (XO) Z(x®) (6)

3.3  Stable Controller Design
For stability analysis, a polynomial Lyapunov fupatrepresented by

ZT (XO)P(D)Z(x(1) (7)

is used, whereP(x(t)) denotes a polynomial matrix ir(t) . If Z(x(t)) = x(t)
and P(x(t)) is a constant matrix, then (7) is reduced to thedcpi Lyapunov

function x(t)" Px(t) .

Lemma 3 presents the SOS conditions for the desiga stable polynomial
fuzzy system.

Lemma 3 [4]. The control system consisting of (2) and (iO¥table if there
exists a symmetric polynomial matrif(X)RV™ and a polynomial matrix

M; (x) O R™N such that (8) and (9) are fulfilled, whegg(x) >0 for X#0 and
£4j(x) 20 forall x

VI (P(X) —£(X)1 )V is SOS (8)
—VI (T(YA (NP(X) ~T(XB ()M (X) + PR) AT ()T (x) -

M;T (0BT ()T (%) +T(x)A; (X)P(X) ~T(x)B; ()M, (x) +

P)A;" ()TT(x) -M;T (0B, ()T" (x) -
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5 PG Ak (23 - Zap(x)

KOK 6 k kOK k

A (QZ(x) +&5; (X) WisSOS, < j,(9)

where VOR" is a vector independent &f T(X) JRV™ is a polynomial matrix
represented by

iy =24 (X) (10)

AX(x) signifies thek-th row of A/(X). K ={k K, ...k} signifies the row
indices of B;(x) whose corresponding row is equal to zero, &ni¢ defined as

X = (Xe1s X2 ve-o1 Xkm) -

Since BX(x) =0 for kK, then

i = S @A (9Z(09)

and fori OK,
OP(X) _
0%
If (9) is satisfied, wheree,;(x) >0, then the zero equilibrium is asymptotically

stable. If P(X) is a constant matrix, then the stability is glopathtisfied.

The feedback gairf; (x) can be constructed from(X) and M;(x) as
Fi (%) = M; ()P (%) (11)

4 Polynomial Fuzzy H., Control Design

Nonlinear H,, control with an SOS approach has been proposeddjpeRet

al. in [9] for nonlinear dynamic plants. This methodlveie expanded in this
paper for polynomial fuzzy control systems.

Consider the polynomial fuzzy model with disturbaaoce controller

= Zh (@A (IZ00 + By (9w B, (1) 12)
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u :—gn(a)Fi (9Z(x) (13)
and define
zz h(a){Cy (0Z(x) +u} (14)

where C;(x) are also polynomial matrices. Vectar, u, and z denote the

exogenous input, the control input, and the objecsignal to be regulated,
respectively. The objective is to design a statmlack lawu =-F (X)Z(x)

such that the closed-loop system is asymptoticédllyle andL, gain fromw to
Zis minimized.

Theorem 1. The zero equilibrium of the closed-loop polynomiatdy system
(12) and (13) is asymptotically stable, and hasLangain fromw to z that is

NxN

less thary if there exist a symmetric polynomial matriR(x)0R and

M, OR™N such that (15), (16), and (17) are satisfied, 3@S polynomials
£(X) >0, &;(x)>0, andg;(x) > Gorx#0.

vi (P(X)=&,(¥)1)y; is SOS (15)

Si+& (1 TMB; () P(X)Cq () +M] (¥
-vy B ()T (X) -2 0 v,is SOS foii=j (16)
C(OPE)+M () 0 |

(8100 +8;00)+ &1 STO0(By 00+ By (%) ;{

(Pe)CT (9 -MT ()
- Lr(e] 0+ B %) ) 0 v
1 {?cn (OPR) - M (x))+}

Pyl (0-MmT (x))+}

—

= - 0 |
2)(Cy (9P ~M; ()

is SOS, fori < | (17)

where
S; () =T(X)A (NP(X) =T (X)By (M (x) + PR)AT ()T (X) =M ] (X)BF ()T (x) -
[i aF’('Xw)Ak(x)Z(x)j

k=1 6Xk
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and M, (x) = F, (X)P(X).

Pr oof.

By using a state feedback controller, the state aumghut equations of the
controlled system are represented by

K= 2 20 @ @A (0~ (0F; (9] + By (9] (18)
2= £n@f(cy (9 - F ()20} 19)

If there exists a polynomial Lyapunov functiovi(x) = ZT(x)P_l(SZ)Z(x) ,
P(X) >0, and y 20, it follows that
V(X)+z z-y*w'ws<0 (20)
for the system described by (12) and (14). By assgrthat initial condition
x(0) =0, integrating (20) from O t®, it follows that
T
V(X) +j(sz - yszW)dt <0. (21)
0
4, .,
wl,

Therefore, theL, gain of the polynomial fuzzy system is less tharf (20) is
satisfied.

SinceV(x) =0, it implies

By substituting the Egs. (18) and (19) into (20)vese
V(X +2Z z= W w=ZT ()P HX)Z(x) + 2T ()P HX)Z(x) +
ZTPYX)Z(0) + 2" z- yPw'w
V(X)+2z z-py*w'w=
{Z(X)T > Sh @, @R 0+(C,00-F,00) (€400 -F, 0}
i=1j=1
W

ghi (@)B] (T (YP(X)

z h ()P (R)T (0)B; (%) [ZM} <0 (22)
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where

R; (= PXRIT((A 09~ Ba(F; (0)+ (A (0 - Ba(F; () TT (0P LX) +
n 9P L(x
(zap(x) A (x>2(x)].

k=1 an

From (22) we can obtain the following inequality

%i:lhi (a)h; (a){Rj () + (C]J (X —F; (x))T (C11 () -F, (x))}

=1

zl h (@B (WTT ()P (%)

S0 @P (T8, ()
- y2|

>0, (23)

for all x.

By multiplying both sides of (23) by blockdial(X) 1] and some algebraic
manipulations, it follows that

Si(¥) T()B; (X)) P(X)Cj (x)+M] (X
- Bi(T' (¥ -yl 0 >0,fori<]|
Ci (P(X) +M (%) 0 |
and
1 1 1 [PeocT 9 -MT()+]]
Sle00+si00)  STE0(By 00+ By () 2{(p(;)c;,. 0017 00)

1T(x)(BlTi (x) +Bj, (x)) -2 0 >0,

1 Tes 0P - M, 00)+
2] (e, 0P® - M, (%)

0 |

fori<j.

Using Lemma 2, the SOS conditions (16) and (17)yntipat the matrices are
positive semidefinite for aki.
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5 Numerical Example

In this section a numerical example is presentezhtov the effectiveness of the
proposed SOS method.

Consider a nonlinear system represented by

X = A(X)x + B; (x)w+ B, (x)u (24)
z=C(X)x+u. (25)
—1+x, -15%2 - 075x5 025-xZ — 0.5%5
Here, A(x)= _sin(x) 0
Xy

By(X) = m B, () = m andc()=[1 d.

The nonlinear system (24) and (25) can be repreddny a polynomial fuzzy
model as follows :

Plant rule 1
X= A (X)x+ By (x)w+ By (X)u

IF ais ,Ul(a),THEN{ 22 C, (XU

Plant rule 2
X= X)X+ X)W+ Byo(X)u
IF ais ,Uz(a)’THEN{ A )z:CB:(Zi)iw e

Here,
)= {—1+ x -~ 15x2 - 075  025-x2 - 0.5x§}

02172 0
1 0
By(X) = M , By(¥) =M G =[1 0],

A = {—1+ x —15x2 — 0752 025-x2 - 0.5x§}

-1 0
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0
B12() m Byo(¥) m C(0=[t 0],

To reduce the computational complexity and to siatgl of the polynomial
fuzzy system’s representation, the non-linear pafrtthe model system

a:—m can be selected as fuzzy variable, Wha@(—g,gj. Since the

X
maximum and minimum values od are 02172 and —1, respectively, the

membership functiong4(a) and i,(a) can be written ags(a) = JZI;Z and
Ho(a) = %, respectively. The membership functionpga) and w, (a)

are obtained from the property gf(a) + 1,(a) =1. The membership functions
. (a) and w,(a) are depicted in Figure 2.

1

09F . /
Hy(@) ™ . (@)

1
0.8+
0.7+
0.6 .
Negative Positive
0.5+
0.4+
0.3+

0.2+

0.1f

0 1 1 L 1 1 >
=i -0.8 -0.6 -0.4 -0.2 0 0.2

Figure2 Membership functiongy (a) andy,(a) .

An H_ control law for polynomial fuzzy systems is dedvesing Theorem 1

by minimizing y . The values ofg; (x), &1(X), &5 & ),and €,,(x) are chosen

to be equal to the positive constant 0.001. In #xample we design three
controllers using matrixP(X) with various degrees. The solutions are obtained
as
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P(X) has degree zero

. -0. -0.86972 1.04 .
P(X) = 0.87238 0.43616 M= withy =1.14808,
-0.43616  0.65424 0.19211 0.8232

P(X) has degree one

(%)= 0.86366+ 0.04643x  -0.38845-0.06685x%
-0.38845-0.06685%  0.75934+0.10267x |

-0.85963871,87 .
x)= , Withy =1.14987
0.21062 881,8

P(X) has degree two

p(x) =| 109206-1.27316x +1.66754%%  -0.4364+0.00112% - 0.00137x°
-0.4364+0.00112x% - 0.00137%°  0.6548 0.00262% + 0.00207%°

-0.86962 244.62| .
, with y=1.14808.
0.19211 131.96

M(X) :[
The control input (13) will stabillize the closealp system, and thé, gain

from w to zis no greater than 1.148, 1.150, and 1.148 fartisols of matrices
P(X) andM (x), which have order zero, one, and two, respectively

T T T 4
| | | Disturbance(w) | | | [ x1
08— ——q---—-——- === = 3f - - AT Tm s,
I O Lo i o]
T T e e e
02 ‘ e’ L __a____]
pTT R
DO A | IW IR T
g S R
i ’:’ : | : - Lo
R R RRRR RN LR L]
085 1‘0 2‘0 3‘0 4‘0 50 5 L L L !
time(s) 0 10 20 30 40 50

time(s)

Figure 3 Disturbancew) and state trajectories of the system without rcbiet.

Figure 3 shows the time response behavior of thdimear system without
controller for initial statesx; and x, of 0.5 and of -0.5, respectively. It is found

from the figure that states of the systemy and x, do not reach zero
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equilibrium; the state; tends to 3.13994, and staig tends to -4.42426. The
random disturbance signal is applied to the systarmg simulation, which is

also shown in Figure 3.

=-=-==P 0-Order

~ Plst-Order ||
--- P 2nd-Order

0.2

Ol — — — A —— — e |

50

40

30

20

10
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P1st-Order
—— P 2nd-Order

time(s)

time(s)

Figure4 State trajectories of the closed-loop system wétous degrees of the

matrix P(X) .
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Figure5 Input signalsu(t) with various degrees of matriR(x) .
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The behavior of the closed-loop system for varidegrees of matrixP(X) is
shown in Figure 4. All of the close-loop systentestaajectories tend to zero in
spite of the given system disturbance. This revibetsthe closed-loop system
is stable. Furthermore, the disturbance input nii8eence is reduced. During
simulation, the initial statéx,, x,) was set a{0.5,-0.5)

The input signalu(t) is the output signal of the polynomial fuzzy qofier
applied to the plant. Figure 5 shows the contrghai trajectory for various
degrees of matrixP(X) . As seen in Figure 5,the control signal is moving
towards the region close to zero, which indicatest the polynomial fuzzy
control signal stabilizes the closed-loop polyraniuzzy system to the zero
equilibrium.

N
©

)

o

IS

w

N

N

X: 49.99
Y: 006028

ratio of the regulated output energy to the disturbance energy
ratio of the regulated output energy to the disturbance energy

o

50
time(s)

8

X 49.98
¥:0.06681

50

time(s)

Figure 6 Ratio of the regulated output energy to the distade input energy.

The ratio of regulated output energy to disturbancgut energy

t t
jo(x)z(x)dt/ij(x)w(x)dt tends to constant values that are about 0.534,
0 0
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0.559, and 0.553 for solutions of matricBgx) and M(x), which have order
zero, one, and two, respectively. Therefore, the gain fromw to z

t t
\/jo (x)z(x)dt/jWT(x)W(x) dt is smaller thary, which is obtained from the
0 0

control design. The ratio of the regulated outmergy to the disturbance input
energy is shown in Figure 6.

The mean square error (MSE) performance criterithefclosed-loop system
with the various degrees of matri®(X) are shown in Figure 7. The MSE

values of x, for degrees zero, one, and two BfX) are 0.0042, 0.0047, and

0.0047, respectively. The MSE valuesxf for degrees zero, one, and two of
P(X) are 0.0053, 0.0010, and 0.0012, respectively.

By Lemma 2, the SOS conditions (17) and (18) intpt the matrices on the
left hand side are positive semidefinite for &l) if condition 2 in this lemma is
satisfied. Therefore semidefinite programming can Used to solve this
problem.

Matrices P(X) and M, (xX) can be found by searching the solution of (17) and

(18). To find the solutions that meet these cooddj the SOSTOOLS program
can be used [10]. The solution of the matricasoisunique. It was found that
increasing the degree of solution matR¢Xx dges not necessarily increase the

performance of the closed-loop system.

0.25 0.25
------- P 0-Order ==+="=P 0-Order
P1st-Order i s PLst-Order
0.2 -==- P 2nd-Order || o2py P 2nd-Order
i —

0.15 b 0.15 -

MSE x1
MSE x2

0.1 4 0.1

0.05

R

0

L L
] 5 10 15

time(s) time(s)

Figure7 Mean square error of the closed-loop system staiéis various
degrees of matriP(X) .

If P(X) and M;(x) are constant matrices and(x)=x, then the system

representation reduces to the T-S fuzzy model andra, and the design
conditions are represented as LMI.
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The controller that satisfies the conditions suwdt the closed-loop system is
asymptotically stable and minimizds, gain fromw to z can be constructed as

R () =M; (P (X).

6 Conclusions

This paper has proposed ., control of polynomial fuzzy systems using a sum

of squares approach. The design condition is repted in terms of SOS. The
solution of the condition can be solved with theSSQOLS program. The
controller that satisfies the SOS condition ensa@sonly that the closed-loop
system is asymptotically stable, but also thatLfmain fromw to z is

minimized. A numerical example has been presemtéllistrate the validity of
theH , control design for polynomial fuzzy systems.
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